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Group of Catalytic Activation of Inert Chemical Bonds 
 
 
Abstract 
 
The major goal in the Martin group is to provide 
solutions to relevant and challenging synthetic 
problems from the scientific and industrial 
standpoint, without losing sight its environmental 
impact. In order to meet these challenges, the 
group is mainly focused on the metal-catalyzed, 
selective activation of relatively inert entities of 
great significance, such as CO2, C-H bonds, C-C  
 

 
 
 
bonds and C-O bonds, as these motifs rank 
amongst the most widespread and fundamental 
linkages in organic chemistry. We are also 
interesting on the design and implementation of 
metal-catalyzed domino reactions since a high 
degree of molecular complexity can be achieved 
in a one-step, hence allowing a rapid access to 
key backbones occurring in many natural 
products. 
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Activation of inert entities has been and 
continues to be of extreme interest to any 
organic chemist. This is especially true with 
activation of atmospheric molecules such as 
CO2 or also the activation of relatively inert C-H, 
C-C or C-O bonds. Certainly, the development of 
catalytic methods for the activation of the above-
mentioned entities would be highly desirable, as 
many of the current methods involve the use of 
stochiometric amounts of metal complexes. The 
research of our group is mainly directed towards 
the development of novel methodologies for the 
metal-catalyzed activation of inert entities with 
the aim of producing synthetically relevant 
molecules (Figure 1). We are also interested in 
the mechanism of these reactions, as the 
understanding of these processes on a 
fundamental level will in turn lay the foundation 
for future applications of this chemistry.  
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Fig. 1 – Research at Martin Laboratories 
 
Ni-catalyzed Functionalization of C-N Bonds 
 
In recent years, the use of C-O electrophiles 
have emerged as a high cost-effective and 
environmentally friendly alternative to organic 
halide counterparts. In contrast, the utilization of 
C-N electrophiles in cross-coupling reactions 
have received considerable less attention. 
Recently, our research group reported the first 
direct catalytic carboxylation of C-N electrophiles 
with CO2 at atmospheric pressure. This method 
was not only characterized by its wide substrate 
scope, including challenging substrate 
combinations, but also outperforms state-of-the-
art techniques for the carboxylation of benzyl 
electrophiles by avoiding commonly observed 
parasitic pathways such as homodimerization or 
β-hydride elimination, thus leading to new 
knowledge in cross-electrophile coupling 
reactions.  Importantly, the ligand used exerted a 
profound influence on both reactivity and 
selectivity, allowing for obtaining a variety of 
different phenyl acetic acids under remarkable 
mild conditions (Figure 2). Importantly,  
 
 

mechanistic studies with isolable, well-defined 
putative nickel intermediates allowed for 
establishing a rationale that indicates that the 
mechanism proceeds via initial oxidative addition 
followed by single-electron-transfer, generating 
Ni(I) intermediates that subsequently trigger CO2 
insertion en route to phenyl acetic acids. 
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Fig. 2 – Ni-catalyzed carboxylation of benzyl C-N 
electrophiles with CO2 

 
Pd-catalyzed C-H Activation 
 
The field of C−H functionalization has gained 
considerable momentum over recent years, 
holding great promise for preparing highly 
complex molecules from simple precursors. 
While synthetically very attractive, most of these 
protocols still deal with the utilization of well-
defined directing groups located at a proximal 
position to the targeted C-H site. This is likely 
due to the presence of multiple, yet similarly 
reactive, C-H bonds that are amenable for the 
subsequent functionalization. Additionally, the 
vast majority of these processes deal with the 
activation of C(sp2)-H bonds, probably due to the 
neat stabilization of the corresponding aryl or 
vinyl metal entities. Prompted by these 
observations, we recently questioned whether it 
would be possible to design a catalytic technique 
capable of activating much more challenging 
C(sp3)-H bonds without the need for using 
directing group methodologies. Indeed, we 
discovered a Pd-catalyzed platform consisting of 
a tandem C(sp3)-H functionalization/carbenoid 
insertion (Figure 3). The method allowed for the 
rapid synthesis of bicyclic frameworks, 
generating all-carbon quaternary centers via 
multiple C-C bond-formations in a 
straightforward manner. The reaction turned out 
to be rather general for a number of substrates, 
including particularly challenging combinations. 
More importantly, we gathered evidence for the 
mechanism by studying the reactivity of the 
putative reaction intermediates that could be 
obtained in pure form as judged by X-ray 
crystallography and spectroscopical techniques.  
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Fig. 3 – Pd-catalyzed synergistic C(sp3)-H 
functionalization/carbenoid insertion en route to 
indane derivatives 
 
Ni-catalyzed CO2 Activation 
 
Carbon dioxide (CO2 ) is abundant, inexpensive, 
nonflammable, and attractive as an 
environmentally friendly chemical reagent. 
Indeed, the fixation of CO2  holds great promise 
for revolutionizing approaches toward the 
elaboration of chemicals of industrial 
significance. In this regard, metal-catalyzed 
carboxylation protocols have become excellent 
alternatives to the classical methods for 
preparing carboxylic acids. In recent years, our 
group launched a program aimed at providing 
new vistas in the area of CO2 activation en route 
to the preparation of carboxylic acids. In 2016, 
we have discovered that the carboxylation of 
unactivated primary alkyl chlorides with CO2 at 
atmospheric pressure can give rapid access to 
the corresponding fatty acids, molecules of 
utmost relevance in pharmaceuticals (Figure 4). 
The protocol was characterized by its generality 
and by a distinctive mechanism that differs from 
previous carboxylation reactions, an observation 
that was corroborated by in depth mechanistic 
studies. These findings set the stage for the 
development of a carboxylation/cyclization of 
alkyl chlorides, affording carbocyclic skeletons. 
Notably, we found an unconventional divergence 
in syn/anti selectivity that can be easily dictated 
by the ligand backbone or substrate utilized 
(Figure 5). Preliminary mechanistic studies 
suggested that the reaction involves the 
intermediacy of Ni(I) species that are generated 
upon single-electron transfer processes (SET) 
promoted by Mn or comproportionation events. 
This assumption could finally be corroborated by 
the isolation of the putative, yet highly sensitive, 
Ni(I) reaction intermediates, demonstrating that 
these species are catalytically competent as 
reaction intermediates in the targeted 
carboxylation event. 
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Fig. 4 – Ni-catalyzed reductive carboxylation of 
unactivated alkyl chlorides 
 

Prompted by these findings, we have recently 
found a nickel-catalyzed reductive carboxylation 
technique for the straightforward synthesis of 
cyclopropanecarboxylic acids (Figure 5). This 
user-friendly and mild transformation operates at 
atmospheric pressure of CO2 and utilized either 
organic halides or alkene precursors. 
Interestingly, the diastereoselective of the 
process is dictated by the substrate employed, 
obtaining in some cases a single 
diastereoisomer. 
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Fig. 5 – Ni-catalyzed reductive carboxylation of 
cyclopropyl motifs 
 
Catalytic Reductive Amidation 
 
Although our group has been particularly prolific 
in the area of carbon dioxide fixation into organic 
matter, we recently wondered whether we could 
extend the scope of these reactions to 
heterocumelenes other than CO2. Among the 
different alternatives, we focused our attention 
on the utilization of isocyanates, as it would 
provide a rapid access to amides, key structural 
motifs in a myriad of pharmaceuticals. Recently, 
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we have found a user-friendly, Ni-catalyzed 
reductive amidation of unactivated primary, 
secondary or even the always-elusive tertiary 
alkyl bromides with isocyanates. This catalytic 
strategy offers an efficient synthesis of aliphatic 
amides under mild conditions and with an 
excellent chemoselectivity profile while avoiding 
the use of stoichiometric and sensitive 
organometallic reagents (Figure 6).  
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Fig. 6 – Ni-catalyzed direct reductive amidation 
of unactivated alkyl halides 
 
While the results in Figure 5 constituted a proof 
of concept for the utilization of isocyanates in 
catalytic reductive coupling reactions, we turned 
our attention on the viability for extending these 

reactions to acrylamides. Specifically, we found 
a rather intriguing catalytic hydroamidation of 
alkynes with isocyanates using light alkyl 
bromides as hydride sources. The method 
essentially turns commonly perceived parasitic 
β-hydride elimination into a strategic advantage, 
rapidly affording acrylamides with excellent 
chemo- and regioselectivity (Figure 7). 
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Fig. 7 – Ni-catalyzed hydroamidation of alkynes 
using light alkyl halides as hydride sources 
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